Support vector method for ARMA system identification: A robust cost interpretation
Abstract:
This paper deals with the application of the Support Vector Method (SVM) methodology to the Auto Regressive and Moving Average (ARMA) linear-system identification problem. The SVM-ARMA algorithm for a single-input single-output transfer function is formulated. The relationship between the SVM coefficients and the residuals, together with the embedded estimation of the autocorrelation function, are presented. Also, the effect of the numerical regularization is used to highlight the robust cost character of this approach. A clinical example is presented for qualitative comparison with the classical Least Squares (LS) methods. © Springer-Verlag Berlin Heidelberg 2002.
Año de publicación:
2002
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Aprendizaje automático
- Inferencia estadística
Áreas temáticas:
- Métodos informáticos especiales
- Matemáticas
- Física aplicada