Surface charge of zwitterionic sulfobetaine micelles with 2-naphthol as a fluorescent probe
Abstract:
2-Naphthol (2NOH) was used as a fluorescent probe in order to examine and quantify the changes in hydrogen ion concentration in micelles formed by the zwitterionic 3-(tetradecyldimethylammonium)-propanesulfonate (SB3-14) surfactant or by anionic sodium dodecyl sulfate (SDS). In the presence of SDS, 2NOH is incorporated into the anionic micelle and the neutral form of the probe becomes the dominant species. The results are consistent with a microenvironment probably with a higher acidity and/or lower polarity in the micellar surface. The addition of SB3-14 generates a plateau at pH 3 to 9 with a fluorescent component of low intensity, which indicates the partial formation of 2NO -*, promoted by proton transfer to water. Theoretical results provided information on the structural parameters, emission wavelength, and changes in ΔpKa values due to the solvent, which are consistent with a solubilization site similar to aqueous ethanol. Zwitterionic surfactants concentrate anions such as trifluoroacetate in zwitterionic micelles, and as a result, the micellar surface charge becomes negative and promotes hydrogen ion incorporation into the micellar surface. Effects observed on the proton transfer between 2NOH* and anions in zwitterionic micellar solutions are complex and, besides the well-known anion incorporation, include changes in the surface potential and acidity of the surface. Zwitterionic micelles are able to emulate the mostly zwitterionic nature of biological membranes, and in the complex nature of zwitterionic micelles, we found reasons for the selection of zwitterionic headgroups in surfactants in natural systems as major components of biological interfaces. © 2012 American Chemical Society.
Año de publicación:
2012
Keywords:
Fuente:


Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Bioquímica
- Ingeniería química
- Bioquímica
Áreas temáticas:
- Química orgánica