Synthetic Data for Anonymization in Secure Data Spaces for Federated Learning
Abstract:
Federated learning implies the integration of shared data. Privacy-enforcing platforms should be implemented to provide a secure environment for federated learning. We are proposing the integration of real world data from local data lakes and the generation and use of general synthetic data to simplify, eventually avoid, encryption or differential learning and use general architectures for data spaces.
Año de publicación:
2022
Keywords:
- Federated learning
- data spaces
- synthetic data
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación