Synthetic Data for Anonymization in Secure Data Spaces for Federated Learning


Abstract:

Federated learning implies the integration of shared data. Privacy-enforcing platforms should be implemented to provide a secure environment for federated learning. We are proposing the integration of real world data from local data lakes and the generation and use of general synthetic data to simplify, eventually avoid, encryption or differential learning and use general architectures for data spaces.

Año de publicación:

2022

Keywords:

  • Federated learning
  • data spaces
  • synthetic data

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación