Tensile properties of 3d printed polymeric pieces: Comparison of several testing setups


Abstract:

This work aims to evaluate and compare variations of a methodology for performing tensile tests on thermoplastic specimens constructed by additive manufacturing technologies (AMT) with filament deposition modeling (FDM). The testing procedures of pieces made in FDM machines do not yet have any conclusive standards because 3D printing, as a disruptive and exponentially growing technology, has not allowed enough time to reach a definitive scientific consensus. Nowadays, testing standards for injected thermoplastic parts or laminated composites are employed as substitutes with careful implementation. A comparative study was carried out on the elasticity modulus, determined within the framework of the same standard but with different measuring devices and testing machines. These machines cover a broad range from professional automated high precision machines to lab and specialized machines. Sets of 3D-printed specimens with identical manufacturing parameters were constructed in a commercial 3D printer. An analysis of variance was performed in order to evaluate the consistency and significance of experimental data for the same polymer, considering the machine type and its corresponding setup. From the experimental data, it is concluded that, with the due care, all evaluated testing setups can reach comparable results, especially in the absence of sophisticated and expensive measuring systems.

Año de publicación:

2021

Keywords:

  • Elastic properties
  • Tensile tests
  • 3D Printing
  • Testing sensitivity

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Polímero
  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Metalurgia y productos metálicos primarios
  • Ingeniería y operaciones afines
  • Imprenta y actividades conexas