The Bochner-Martinelli transform with a continuous density: Davydov's theorem


Abstract:

In this paper, we extend to the theory of functions of several complex variables, a theorem due to Davydov from classical complex analysis. We prove the following: if n is a bounded domain with boundary of finite (2n-1)-dimensional Hausdorff measure H2n-1 and f is a continuous complex-valued function on such that [image omitted] converges uniformly on as r0, then the Bochner-Martinelli transform on of f admits a continuous extension to and the Sokhotski-Plemelj formulae hold. For n=2, we briefly sketch how quaternionic analysis techniques may be used to give an alternative proof of the above result.

Año de publicación:

2008

Keywords:

  • Bochner-Martinelli transform
  • Non-smooth boundaries
  • Sokhotski-plemelj formulae

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Matemáticas aplicadas
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Matemáticas
  • Física