The Clifford-Cauchy transform with a continuous density: N. Davydov's theorem


Abstract:

N. A. Davydov was among the first mathematicians who investigated the question of the continuity of the complex Cauchy transform along a non-smooth curve. In particular he proved that the Cauchy transform over an arbitrary closed, rectifiable Jordan curve can be continuously extended up to this curve from both sides if its density belongs to the Lipschitz class. In this paper we deal with higher dimensional analogue of Davydov's theorem within the framework of Clifford analysis. Copyright © 2005 John Wiley & Sons, Ltd.

Año de publicación:

2005

Keywords:

  • Clifford analysis
  • Cauchy transform
  • Multivector fields

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Matemáticas