The Jacobi metric approach for dynamical wormholes


Abstract:

We present the Jacobi metric formalism for dynamical wormholes. We show that in isotropic dynamical spacetimes , a first integral of the geodesic equations can be found using the Jacobi metric, and without any use of geodesic equation. This enables us to reduce the geodesic motion in dynamical wormholes to a dynamics defined in a Riemannian manifold. Then, making use of the Jacobi formalism, we study the circular stable orbits in the Jacobi metric framework for the dynamical wormhole background. Finally, we also show that the Gaussian curvature of the family of Jacobi metrics is directly related, as in the static case, to the flare-out condition of the dynamical wormhole, giving a way to characterize a wormhole spacetime by the sign of the Gaussian curvature of its Jacobi metric only.

Año de publicación:

2023

Keywords:

  • Riemannian geometry
  • Jacobi metric
  • General relativity
  • wormholes
  • Gaussian curvature

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Modelo matemático

Áreas temáticas:

  • Física
  • Cuerpos y fenómenos celestes específicos
  • Astronomía y ciencias afines