The advanced-step NMPC controller: Optimality, stability and robustness


Abstract:

Widespread application of dynamic optimization with fast optimization solvers leads to increased consideration of first-principles models for nonlinear model predictive control (NMPC). However, significant barriers to this optimization-based control strategy are feedback delays and consequent loss of performance and stability due to on-line computation. To overcome these barriers, recently proposed NMPC controllers based on nonlinear programming (NLP) sensitivity have reduced on-line computational costs and can lead to significantly improved performance. In this study, we extend this concept through a simple reformulation of the NMPC problem and propose the advanced-step NMPC controller. The main result of this extension is that the proposed controller enjoys the same nominal stability properties of the conventional NMPC controller without computational delay. In addition, we establish further robustness properties in a straightforward manner through input-to-state stability concepts. A case study example is presented to demonstrate the concepts. © 2008 Elsevier Ltd. All rights reserved.

Año de publicación:

2009

Keywords:

  • stability
  • Nonlinear model pbkp_redictive control
  • large scale
  • Lyapunov functions
  • Fast
  • nonlinear programming
  • sensitivity

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo
  • Control óptimo

Áreas temáticas de Dewey:

  • Ciencias de la computación
  • Derecho privado
  • Física aplicada
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 12: Producción y consumo responsables
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA