The approximation of generalized turning points by projection methods with superconvergence to the critical parameter
Abstract:
A procedure is given that generates characterizations of singular manifolds for mildly nonlinear mappings between Banach spaces. This characterization is used to develop a method for determining generalized turning points by using projection methods as a discretization. Applications are given to parameter dependent two-point boundary value problems. In particular, collocation at Gauss points is shown to achieve superconvergence in approximating the parameter at simple turning points. © 1986 Springer-Verlag.
Año de publicación:
1986
Keywords:
- Subject Classifications: AMS (MOS): 65H10, CR: G1.5
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Análisis numérico
- Optimización matemática
- Matemáticas aplicadas
Áreas temáticas:
- Análisis