The effect of noise on foreground detection algorithms


Abstract:

Background segmentation methods are exposed to the effects of different kinds of noise due to the limitations of image acquisition devices. This type of distortion can worsen the performance of segmentation methods because the input pixel values are altered. In this paper we study how several well-known background segmentation methods perform when the input is corrupted with several levels of uniform and Gaussian noise. Furthermore, few situations are reported where instead of an inconvenience, adding noise to the input may be desirable to attenuate some limitations of a method. In this work, the performance of nine well known methods is studied under both kinds of noise.

Año de publicación:

2018

Keywords:

  • background modeling
  • foreground detection
  • Uniform noise
  • Covariance matrix regularization
  • Gaussian noise

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación