The inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant, carbohydrate chains, and proteinaceous components are all responsible for the cross-reactivity of trypanosome variant surface glycoproteins


Abstract:

Salivarian trypanosomes evade the host immune system by continually swapping their protective variant surface glycoprotein (VSG) coat. Given that VSGs from various trypanosome stocks exhibited cross-reactivity (Camargo et al., Vet. Parasitol. 207, 17–33, 2015), we analyzed here which components are the antigenic determinants for this cross-reaction. Soluble forms of VSGs were purified from four Venezuelan animal trypanosome isolates: TeAp-N/D1, TeAp-ElFrio01, TeAp-Mantecal01, and TeGu-Terecay323. By using the VSG soluble form from TeAp-N/D1, we found that neither the inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant nor the carbohydrate chains were exclusively responsible for its cross-reactivity. Then, all four purified glycoproteins were digested with papain and the resulting peptides were separated by high-performance liquid chromatography. Dot blot evaluation of the fractions using sera from trypanosome-infected animals yielded peptides that possessed cross-reaction activity, demonstrating for the first time that proteinaceous epitopes are also responsible for the cross-reactivity of trypanosome VSGs.

Año de publicación:

2018

Keywords:

  • salivarian trypanosomes
  • Animal trypanosomosis
  • cross-reactivity
  • antigenic determinants
  • variant surface glycoproteins
  • immune epitopes

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Biología molecular
  • Bioquímica

Áreas temáticas:

  • Bioquímica