The irregularity and modular irregularity strength of fan graphs
Abstract:
For a simple graph G with no isolated edges and at most, one isolated vertex, a labeling ϕ: E(G) → {1, 2, …, k} of positive integers to the edges of G is called irregular if the weights of the vertices, defined as wtϕ (v) = ∑u∈N(v) ϕ(uv), are all different. The irregularity strength of a graph G is known as the maximal integer k, minimized over all irregular labelings, and is set to ∞ if no such labeling exists. In this paper, we determine the exact value of the irregularity strength and the modular irregularity strength of fan graphs.
Año de publicación:
2021
Keywords:
- Irregular labeling
- modular irregularity strength
- modular irregular labeling
- fan graph
- Irregularity strength
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
Áreas temáticas de Dewey:
- Ciencias de la computación
- Economía
- Principios generales de matemáticas
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 4: Educación de calidad
- ODS 8: Trabajo decente y crecimiento económico