The metric dimension of regular bipartite graphs


Abstract:

A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. A bipartite graph G(n,n) is a graph whose vertex set V can be partitioned into two subsets V 1 and V2, with V1\ = |V2| = n, such that every edge of G joins V1and V2. The graph G is called k-regular if every vertex of G is adjacent to k other vertices. In this paper, we determine the metric dimension of k-regular bipartite graphs G(n,n) where k = n - 1 or k= n - 2.

Año de publicación:

2011

Keywords:

  • Basis
  • Bipartite graph
  • Regular graph
  • Metric dimension

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Teoría de grafos

Áreas temáticas:

  • Álgebra
  • Principios generales de matemáticas
  • Matemáticas