The metric dimension of regular bipartite graphs
Abstract:
A set of vertices W resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. A bipartite graph G(n,n) is a graph whose vertex set V can be partitioned into two subsets V 1 and V2, with V1\ = |V2| = n, such that every edge of G joins V1and V2. The graph G is called k-regular if every vertex of G is adjacent to k other vertices. In this paper, we determine the metric dimension of k-regular bipartite graphs G(n,n) where k = n - 1 or k= n - 2.
Año de publicación:
2011
Keywords:
- Basis
- Bipartite graph
- Regular graph
- Metric dimension
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
Áreas temáticas:
- Álgebra
- Principios generales de matemáticas
- Matemáticas