The rate of convergence for subexponential distributions and densities
Abstract:
A distribution function F on the nonnegative real line is called subexponential if limx→∞(1-F*n(x))/(1-F(x)) = n for all n ≤ 2, where F*n denotes the n-fold Stieltjes convolution of F with itself. In this paper, we consider the rate of convergence in the above definition and in its density analogue. Among others we discuss the asymptotic behavior of the remainder term Rn(x) defined by Rn(x) = 1 -F*n(x) - n(1-F(x)) and of its density analogue rn(x) = -(Rn(x))′. Our results complement and complete those obtained by several authors. In an earlier paper, we obtained results of the form Rn(x) = O(1)f(x)R(x), where f is the density of F and R(x) = ∫0x (1-F(y))dy. In this paper, among others we obtain asymptotic expressions of the form Rn(x) = (2n)R2 (x) + O(1)(- f′(x))R2(x), where f′ is the derivative of f. © 2002 Plenum Publishing Corporation.
Año de publicación:
2002
Keywords:
- Tail behavior
- The rate of convergence
- Subexponential distributions
- Subexponential densities
- Convolutions
- O-regular variantion
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Probabilidad
- Optimización matemática
Áreas temáticas:
- Probabilidades y matemática aplicada
- Principios generales de matemáticas