The relationship between the eigenvalues and eigenvectors of a similarity matrix and its associated Carbó index matrix
Abstract:
The eigenvalues and eigenvectors of a quantum similarity matrix are also generalized eigenvalues and eigenvectors of the associated matrix of Carbó indices. This establishes bounds on the spectrum of the Carbó index matrix; for example, a quantum similarity matrix is positive semidefinite if and only if the associated Carbó index matrix is also positive semidefinite. The generalized eigenvalue problem for the Carbó index matrix has a diagonal metric matrix on the right-hand-side. Every generalized eigenvalue problem can be written in this diagonal form (i.e., this form is not special to this application). This diagonally structure generalized eigenvalue problem is especially convenient because it can be converted to a conventional eigenvalue problem by a particularly simple partial Löwdin transformation. © 2010 Springer Science+Business Media, LLC.
Año de publicación:
2011
Keywords:
- Generalized eigenvalue problem
- Carbó index
- Quantum Similarity
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Álgebra lineal
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Álgebra
- Análisis