The structure of optimal parameters for image restoration problems


Abstract:

We study the qualitative properties of optimal regularisation parameters in variational models for image restoration. The parameters are solutions of bilevel optimisation problems with the image restoration problem as constraint. A general type of regulariser is considered, which encompasses total variation (TV), total generalised variation (TGV) and infimal-convolution total variation (ICTV). We prove that under certain conditions on the given data optimal parameters derived by bilevel optimisation problems exist. A crucial point in the existence proof turns out to be the boundedness of the optimal parameters away from 0 which we prove in this paper. The analysis is done on the original - in image restoration typically non-smooth variational problem - as well as on a smoothed approximation set in Hilbert space which is the one considered in numerical computations. For the smoothed bilevel problem we also prove that it Γ converges to the original problem as the smoothing vanishes. All analysis is done in function spaces rather than on the discretised learning problem.

Año de publicación:

2016

Keywords:

  • Parameter choice
  • Optimality
  • Total generalised variation
  • Total variation
  • Bi-level optimisation

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Visión por computadora
  • Algoritmo
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos
  • Técnicas, equipos y materiales