Theoretical Basis for Gene Expression Modeling Based on the IEEE 1906.1 Standard


Abstract:

Molecular communications essentially analyze the transmission of the information at the nano level in cells, the smart devices that constitute our bodies. This emerging field uses traditional communication systems elements and maps them to molecular signaling and communication found inside and outside the body. Hence, molecular communications’ fundamental importance denotes the necessity to develop a new technology framework that provides a novel perspective to fight human diseases (the COVID-19 pandemic has highlighted this challenge). Thus, the architecture for molecular communications can be explored from the perspective of computer networks, i.e., the TCP/IP reference model and the basic model of MC can also be represented using Shannon’s communication model (i.e., transmitter, communication channel, and receiver). In this field, IEEE impulses the 1906.1 and 1906.1.1 standards that establish definitions, terminology, and a conceptual model for ad hoc network communication at the nanoscale. With these ICT perspectives, we appropriately have analyzed gene expression in eukaryotes organisms as a layered stack (network, link, and physical layer) of a nano communication network. In this biological communication process, the cellular nucleus behaves as the DTE, the ribosomes, and Endoplasmic Reticulum represent the DCE, the Golgi Apparatus represents a border router. The proteins secreted by the cell move through the bloodstream (physical transmission medium) and reaching the receiver (DCE-DTE), which processes the information through ligands and their receptors.

Año de publicación:

2021

Keywords:

  • IEEE 1906.1 standard
  • Genetic expression
  • Molecular communication
  • Stack network modeling

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

    Áreas temáticas:

    • Ciencias de la computación
    • Biología
    • Gestión y servicios auxiliares