Theoretical developments for interpreting kernel spectral clustering from alternative viewpoints
Abstract:
To perform an exploration process over complex structured data within unsupervised settings, the so-called kernel spectral clustering (KSC) is one of the most recommended and appealing approaches, given its versatility and elegant formulation. In this work, we explore the relationship between (KSC) and other well-known approaches, namely normalized cut clustering and kernel k-means. To do so, we first deduce a generic KSC model from a primal-dual formulation based on least-squares support-vector machines (LS-SVM). For experiments, KSC as well as other consider methods are assessed on image segmentation tasks to prove their usability.
Año de publicación:
2017
Keywords:
- Kernel
- SUPPORT VECTOR MACHINES
- Spectral clustering
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
- Ciencias de la computación