Theoretical electron energy loss spectroscopy of isolated graphene


Abstract:

A thorough understanding of the electronic structure is a necessary first step for the design of nanoelectronics, chemical/bio-sensors, electrocatalysts and nanoplasmonics using graphene. As such, theoretical spectroscopic techniques to describe collective excitations of graphene are of fundamental importance. Starting from density functional theory (DFT), linear response time dependent DFT in frequency-reciprocal space within the random phase approximation (TDDFT-RPA) is used to describe the loss function -ℑ{ε{lunate}-1(q,ω)} for isolated graphene. To ensure any spurious interactions between layers are removed, both radial cutoff of the Coulomb kernel, and extra vacuum directly at the TDDFT-RPA level are employed. A combination of both methods is found to provide a correct description of the electron energy loss spectra of isolated graphene, at a significant reduction in computational cost compared to standard methods.

Año de publicación:

Keywords:

  • EELS
  • TDDFT-RPA
  • Graphene
  • Nanoplasmonics
  • DFT calculations

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales
  • Nanostructura
  • Ciencia de materiales

Áreas temáticas:

  • Física moderna
  • Física
  • Física aplicada

Contribuidores: