Thermal Image Super-Resolution: A Novel Unsupervised Approach


Abstract:

This paper proposes the use of a CycleGAN architecture for thermal image super-resolution under a transfer domain strategy, where middle-resolution images from one camera are transferred to a higher resolution domain of another camera. The proposed approach is trained with a large dataset acquired using three thermal cameras at different resolutions. An unsupervised learning process is followed to train the architecture. Additional loss function is proposed trying to improve results from the state of the art approaches. Following the first thermal image super-resolution challenge (PBVS-CVPR2020) evaluations are performed. A comparison with previous works is presented showing the proposed approach reaches the best results.

Año de publicación:

2022

Keywords:

  • Challenge
  • Thermal image super-resolution
  • Datasets
  • Unpair thermal images
  • thermal images

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Simulación por computadora

Áreas temáticas:

  • Ciencias de la computación
  • Métodos informáticos especiales
  • Física aplicada