Thermal comfort estimation using a neurocomputational model


Abstract:

Thermal comfort conditions are important for the normal development of human tasks, and as such they have been analyzed in the context of several areas including human physiology, ergonomics, heating and cooling systems, architectural design, etc. In this work, we analyze the estimation of the thermal comfort perception by human subjects using a neurocomputational model based on the C-Mantec constructive neural network architecture, comparing it with two standard methods for modeling thermal comfort: Fanger and COMFA models. The results indicate a significative advantage of C-Mantec in terms of the pbkp_redictive accuracy obtained, consider also that the flexibility of the neural model would permit the introduction of extra variables that can increase further the thermal comfort estimation.

Año de publicación:

2016

Keywords:

  • Constructive Neural Networks
  • Supervised learning
  • THERMAL COMFORT

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencias de la computación
  • Red neuronal artificial

Áreas temáticas:

  • Métodos informáticos especiales
  • Fisiología humana
  • Otras ramas de la ingeniería