Tighter lower bounds on the error variance of pole and residue estimates from impulse response data: An expository example


Abstract:

The estimation of nonrandom pole and residue parameters from impulse-response data is revisited. Specifically, for an expository example (a one-pole discrete-time system), the Hammersley-Chapman-Robbins lower bound (HCRB) on the estimation error variance is derived, and compared with the widely-used Cramer-Rao bound (CRB). The HCRB is found to be significantly tighter than the CRB over a range of parameter values. Simplifications of the HCRB which admit analytical expressions but are guaranteed to outperform the CRB are also derived. The results indicate that CRB-based confidence intervals for pole-residue estimates, which are being used in several mode monitoring applications, need to be examined with caution.

Año de publicación:

2017

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática
    • Inferencia estadística

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    • Ingeniería civil
    • Física aplicada
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 4: Educación de calidad
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA

    Contribuidores: