Tighter lower bounds on the error variance of pole and residue estimates from impulse response data: An expository example
Abstract:
The estimation of nonrandom pole and residue parameters from impulse-response data is revisited. Specifically, for an expository example (a one-pole discrete-time system), the Hammersley-Chapman-Robbins lower bound (HCRB) on the estimation error variance is derived, and compared with the widely-used Cramer-Rao bound (CRB). The HCRB is found to be significantly tighter than the CRB over a range of parameter values. Simplifications of the HCRB which admit analytical expressions but are guaranteed to outperform the CRB are also derived. The results indicate that CRB-based confidence intervals for pole-residue estimates, which are being used in several mode monitoring applications, need to be examined with caution.
Año de publicación:
2017
Keywords:
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Inferencia estadística
Áreas temáticas de Dewey:
- Ciencias de la computación
- Ingeniería civil
- Física aplicada
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 4: Educación de calidad
- ODS 8: Trabajo decente y crecimiento económico