Total generalized variation regularization in data assimilation for burgers’ equation
Abstract:
We propose a second–order total generalized variation (TGV) regularization for the reconstruction of the initial condition in variational data assimilation problems. After showing the equivalence between TGV-regularization and a Bayesian MAP estimator, we focus on the detailed study of the inviscid Burgers’ data assimilation problem. Due to the difficult structure of the governing hyperbolic conservation law, we consider a discretize–then–optimize approach and rigorously derive a first–order optimality condition for the problem. For the numerical solution, we propose a globalized reduced Newton–type method together with a polynomial line–search strategy, and prove convergence of the algorithm to stationary points. The paper finishes with some numerical experiments where, among others, the performance of TGV-regularization compared to TV-regularization is tested.
Año de publicación:
2019
Keywords:
- Primal-dual methods
- Second-order methods
- Data assimilation
- Inviscid Burgers’ equation
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis
- Análisis numérico
- Métodos informáticos especiales