Total generalized variation regularization in data assimilation for burgers’ equation


Abstract:

We propose a second–order total generalized variation (TGV) regularization for the reconstruction of the initial condition in variational data assimilation problems. After showing the equivalence between TGV-regularization and a Bayesian MAP estimator, we focus on the detailed study of the inviscid Burgers’ data assimilation problem. Due to the difficult structure of the governing hyperbolic conservation law, we consider a discretize–then–optimize approach and rigorously derive a first–order optimality condition for the problem. For the numerical solution, we propose a globalized reduced Newton–type method together with a polynomial line–search strategy, and prove convergence of the algorithm to stationary points. The paper finishes with some numerical experiments where, among others, the performance of TGV-regularization compared to TV-regularization is tested.

Año de publicación:

2019

Keywords:

  • Primal-dual methods
  • Second-order methods
  • Data assimilation
  • Inviscid Burgers’ equation

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Análisis numérico
  • Métodos informáticos especiales