Tourism Recommender System Based on Natural Language Classifier
Abstract:
In this paper we introduce a tourism recommender system based on tourist inquiries about a particular place in real time using an online search box. Currently, tools such as IBM Watson Natural Language Classifier based on deep learning facilitate natural language processing and classification on different categories, and consequently, the generation of recommendation systems. We present the proposed architecture and the results obtained by using this system in the historic center of Quito-Ecuador. For the evaluation, we apply a survey to test the usability and measure the usefulness of application use. This work may be useful for researchers who wish to create recommender systems based on tourist questions instantly and in real time.
Año de publicación:
2021
Keywords:
- Tourism recommender system
- Artificial Intelligence
- IBM Watson Natural Language Classifier
Fuente:
![scopus](/_next/image?url=%2Fscopus.png&w=128&q=75)
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos
- Producción