Towards real time epidemiology: Data assimilation, modeling and anomaly detection of health surveillance data streams


Abstract:

An integrated quantitative approach to data assimilation, prediction and anomaly detection over real-time public health surveillance data streams is introduced. The importance of creating dynamical probabilistic models of disease dynamics capable of predicting future new cases from past and present disease incidence data is emphasized. Methods for real-time data assimilation, which rely on probabilistic formulations and on Bayes' theorem to translate between probability densities for new cases and for model parameters are developed. This formulation creates future outlook with quantified uncertainty, and leads to natural anomaly detection schemes that quantify and detect disease evolution or population structure changes. Finally, the implementation of these methods and accompanying intervention tools in real time public health situations is realized through their embedding in state of the art information technology and interactive visualization environments. © Springer-Verlag Berlin Heidelberg 2007.

Año de publicación:

2007

Keywords:

  • Anomaly detection
  • Interactive visualization
  • Surveillance
  • Real time epidemiology
  • Data assimilation
  • Bayesian inference

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Epidemiología
  • Análisis de datos

Áreas temáticas de Dewey:

  • Medicina forense; incidencia de enfermedades
  • Medicina y salud
  • Enfermedades
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 3: Salud y bienestar
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA