Trilateration-based Indoor Location using Supervised Learning Algorithms


Abstract:

The indoor positioning system (IPS) has a wide range of applications, due to the advantages it has over Global Positioning Systems (GPS) in indoor environments. Due to the biosecurity measures established by the World Health Organization (WHO), where the social distancing is provided, being stricter in indoor environments. This work proposes the design of a positioning system based on trilateration. The main objective is to pbkp_redict the positioning in both the 'x' and 'y' axis in an area of 8 square meters. For this purpose, 3 Access Points (AP) and a Mobile Device (DM), which works as a raster, have been used. The Received Signal Strength Indication (RSSI) values measured at each AP are the variables used in regression algorithms that pbkp_redict the x and y position. In this work, 24 regression algorithms have been evaluated, of which the lowest errors obtained are 70.322 [cm] and 30.1508 [cm], for the x and y axes, respectively.

Año de publicación:

2022

Keywords:

  • Rssi
  • Indoor positioning systems
  • Trilateracion
  • Machine learning

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación