Two constructions of H-antimagic graphs


Abstract:

Let H be a graph. A graph G=(V,E) admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. A graph G admitting an H-covering is called (a,d)-H-antimagic if there is a bijection f:V(G)∪E(G)→{1,2,…,|V(G)|+|E(G)|} such that for each subgraph H′ of G isomorphic to H, the sum of labels of all the edges and vertices belonged to H′ constitute the arithmetic progression with the initial term a and the common difference d. Such a graph is called super if f(V(G))={1,2,3,…,|V(G)|}. In this paper, we provide two constructions of (super) H-antimagic graphs obtained from smaller (super) H′-antimagic graphs.

Año de publicación:

2017

Keywords:

  • Super (a,d)-H-antimagic graph
  • H-covering
  • (a,d)-H-antimagic graph
  • Corona of graphs
  • Subdivision of edges

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación