A data augmentation approach for a class of statistical inference problems
Abstract:
We present an algorithm for a class of statistical inference problems. The main idea is to reformulate the inference problem as an optimization procedure, based on the generation of surrogate (auxiliary) functions. This approach is motivated by the MM algorithm, combined with the systematic and iterative structure of the Expectation-Maximization algorithm. The resulting algorithm can deal with hidden variables in Maximum Likelihood and Maximum a Posteriori estimation problems, Instrumental Variables, Regularized Optimization and Constrained Optimization problems. The advantage of the proposed algorithm is to provide a systematic procedure to build surrogate functions for a class of problems where hidden variables are usually involved. Numerical examples show the benefits of the proposed approach.
Año de publicación:
2018
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Análisis de datos
- Optimización matemática
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Probabilidades y matemática aplicada
- Ciencias sociales