Unbounded perturbation of the exponential dichotomy for evolution equations


Abstract:

In this paper we prove that the exponential dichotomy for evolution equations in Banach spaces is not destroyed, if we perturb the equation by "small" unbounded linear operator. This is done by employing a skew-product semiflow technique and a perturbation principle from linear operator theory. Finally, we apply these results to partial parabolic equations and functional differential equations. © 1996 Academic Press, Inc.

Año de publicación:

1996

Keywords:

    Fuente:

    googlegoogle
    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Sistema dinámico
    • Optimización matemática
    • Sistema no lineal

    Áreas temáticas de Dewey:

    • Análisis
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 4: Educación de calidad
    Procesado con IAProcesado con IA

    Contribuidores: