Undecimated wavelet based autoregressive model for anchovy catches forecasting


Abstract:

The aim of this paper is to find a model to forecast 1-month ahead monthly anchovy catches using un-decimated multi-scale stationary wavelet transform (USWT) combined with linear autoregressive (AR) method. The original monthly anchovy catches are decomposed into various sub-series employing USWT and then appropriate sub-series are used as inputs to the multi-scale autoregressive (MAR) model. The MAR's parameters are estimated using the regularized least squares (RLS) method. RLS based forecasting performance was evaluated using determination coefficient and shown that a 99% of the explained variance was captured with a reduced parsimony and high accuracy. © 2008 Springer Berlin Heidelberg.

Año de publicación:

2008

Keywords:

  • Autoregressive
  • forecasting
  • Stationary Wavelet Transform

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Pronóstico
  • Modelo matemático

Áreas temáticas de Dewey:

  • Geología, hidrología, meteorología
  • Análisis numérico
  • Economía de la tierra y la energía
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 14: Vida submarina
  • ODS 8: Trabajo decente y crecimiento económico
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA