Undecimated wavelet based autoregressive model for anchovy catches forecasting
Abstract:
The aim of this paper is to find a model to forecast 1-month ahead monthly anchovy catches using un-decimated multi-scale stationary wavelet transform (USWT) combined with linear autoregressive (AR) method. The original monthly anchovy catches are decomposed into various sub-series employing USWT and then appropriate sub-series are used as inputs to the multi-scale autoregressive (MAR) model. The MAR's parameters are estimated using the regularized least squares (RLS) method. RLS based forecasting performance was evaluated using determination coefficient and shown that a 99% of the explained variance was captured with a reduced parsimony and high accuracy. © 2008 Springer Berlin Heidelberg.
Año de publicación:
2008
Keywords:
- Autoregressive
- forecasting
- Stationary Wavelet Transform
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Pronóstico
- Modelo matemático
Áreas temáticas:
- Geología, hidrología, meteorología
- Análisis numérico
- Economía de la tierra y la energía