Universal first-order logic is superfluous in the second level of the polynomial-time hierarchy


Abstract:

In this paper we prove that ∀FO, the universal fragment of first-order logic, is superfluous in Σ2p and Π2p. As an example, we show that this yields a syntactic proof of the Σ2p-completeness of value-cost satisfiability. The superfluity method is interesting since it gives a way to prove completeness of problems involving numerical data such as lengths, weights and costs and it also adds to the programme started by Immerman and Medina about the syntactic approach in the study of completeness.

Año de publicación:

2019

Keywords:

  • Computational complexity
  • descriptive complexity
  • Graph Theory
  • MATHEMATICAL LOGIC

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Filosofía del lenguaje

Áreas temáticas:

  • Sistemas
  • Procesos mentales conscientes e inteligencia
  • Ética (Filosofía moral)

Contribuidores: