Unsupervised motion classification by means of efficient feature selection and tracking


Abstract:

This paper presents an efficient technique for human motion recognition; in particular, it is focused on labeling a movement as a walking or running displacement, which are the most frequent type of locomotion. The proposed technique consists of two stages and is based on the study of feature points' trajectories. The first stage detects peaks and valleys of points' trajectories, which are used on the second stage to discern whether the movement corresponds to a walking or a running displacement. Prior knowledge of human body kinematics structure together with the corresponding motion model are the basis for the motion recognition. Experimental results with different video sequences are presented. © 2004 IEEE.

Año de publicación:

2004

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Ciencias de la computación

    Áreas temáticas:

    • Métodos informáticos especiales
    • Funcionamiento de bibliotecas y archivos
    • Análisis numérico