Urchin-like TiO<inf>2</inf> structures decorated with lanthanide-doped Bi<inf>2</inf>S<inf>3</inf> quantum dots to boost hydrogen photogeneration performance


Abstract:

The formation of heterojunctions between wide- and narrow-bandgap photocatalysts is commonly employed to boost the efficiency of photocatalytic hydrogen generation. Herein, the photoactivity of urchin-like rutile particles is increased by decorating with pristine as well as Er- or Yb-doped Bi2S3 quantum dots (QDs) at varied QD loadings (1–20 wt%) and doping degrees (1–15 mol%), and the best hydrogen evolution performance is achieved at Er and Yb contents of 10 mol%. Specifically, a hydrogen productivity of 1576.7 μmol gcat−1 is achieved after 20-h irradiation for TiO2 decorated by 10 mol% Yb-doped Bi2S3 QDs. Theoretical calculations show that the introduction of defects into the Bi2S3 lattice through Er/Yb doping promotes the creation of new energy levels and facilitates the transport of photogenerated charges during photocatalysis.

Año de publicación:

2020

Keywords:

  • Heterogeneous photocatalysis
  • Hydrogen generation
  • Bismuth sulfide quantum dots
  • Doped quantum dots

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Nanostructura
  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas: