A decomposition algorithm for simultaneous scheduling and control of CSP systems


Abstract:

We present a decomposition algorithm to perform simultaneous scheduling and control decisions in concentrated solar power (CSP) systems. Our algorithm is motivated by the need to determine optimal market participation strategies at multiple timescales. The decomposition scheme uses physical insights to create surrogate linear models that are embedded within a mixed-integer linear scheduling layer to perform discrete (operational mode) decisions. The schedules are then validated for physical feasibility in a dynamic optimization layer that uses a continuous full-resolution CSP model. The dynamic optimization layer updates the physical variables of the surrogate models to refine schedules. We demonstrate that performing this procedure recursively provides high-quality solutions of the simultaneous scheduling and control problem. We exploit these capabilities to analyze different market participation strategies and to explore the influence of key design variables on revenue. Our results also indicate that using scheduling algorithms that neglect detailed dynamics significantly decreases market revenues. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2408–2417, 2018.

Año de publicación:

2018

Keywords:

  • mixed integer programming
  • Thermal energy storage
  • solar energy
  • Dynamic optimization
  • electricity markets

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo
  • Algoritmo
  • Ciencias de la computación

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería
  • Dirección general