User daily activity classification from accelerometry using feature selection and SVM
Abstract:
User daily activity monitoring is useful for physicians in geriatrics and rehabilitation as a indicator of user health and mobility. Real time activities recognition by means of a processing node including a triaxial accelerometer sensor situated in the user's chest is the main goal for the presented experimental work. A two-phases procedure implementing features extraction from the raw signal and SVM-based classification has been designed for real time monitoring. The designed procedure showed an overall accuracy of 92% when recogninzing experimentation performed in daily conditions. © 2009 Springer Berlin Heidelberg.
Año de publicación:
2009
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación