Using a simulated annealing to enhance learning in adjustment processes
Abstract:
This paper introduces a new approach to enhance learning in adjustment processes by using a support vector machine (SVM) algorithm as discriminant function jointly with an action generator module. The method trains a SVM with state-action patterns and uses trained SVM to select an appropriate action given a certain state in order to reach the target state. The system incorporates a simulated annealing technique to increase the exploration capacity and improve the ability to avoid local minima. The methodology has been tested in an example with artificial data. © 2009 The authors and IOS Press.
Año de publicación:
2009
Keywords:
- Machine learning
- SUPPORT VECTOR MACHINES
- Simulated Annealing
- Adjustment process
- learning algorithms
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Pedagogía
Áreas temáticas:
- Ciencias de la computación