Using a simulated annealing to enhance learning in adjustment processes


Abstract:

This paper introduces a new approach to enhance learning in adjustment processes by using a support vector machine (SVM) algorithm as discriminant function jointly with an action generator module. The method trains a SVM with state-action patterns and uses trained SVM to select an appropriate action given a certain state in order to reach the target state. The system incorporates a simulated annealing technique to increase the exploration capacity and improve the ability to avoid local minima. The methodology has been tested in an example with artificial data. © 2009 The authors and IOS Press.

Año de publicación:

2009

Keywords:

  • Machine learning
  • SUPPORT VECTOR MACHINES
  • Simulated Annealing
  • Adjustment process
  • learning algorithms

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Algoritmo
  • Pedagogía

Áreas temáticas:

  • Ciencias de la computación