Using association analysis of web data in recommender systems


Abstract:

The numerous web sites existing nowadays make available more information than a user can manage. Thus, an essential requirement of current web applications is to provide users with instruments for personalized selective retrieval of web information. In this paper, a procedure for making personalized recommendations is proposed. The method is based on building a pbkp_redictive model from an association model of Web data. It uses a set of association rules generated by a data mining algorithm that discovers knowledge in an incremental way. These rules provide models with relevant patterns that minimize the recommendation errors. © Springer-Verlag 2004.

Año de publicación:

2004

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Ciencias de la computación

    Áreas temáticas:

    • Funcionamiento de bibliotecas y archivos