Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control


Abstract:

In recent years, the photovoltaic generation installed capacity has been steadily growing thanks to its inexhaustible and non-polluting characteristics. However, solar generators are strongly dependent on intermittent weather parameters, increasing power systems' uncertainty level. Forecasting models have arisen as a feasible solution to decreasing photovoltaic generators' uncertainty level, as they can produce accurate predictions. Traditionally, the vast majority of research studies have focused on the development of accurate prediction point forecasters. However, in recent years some researchers have suggested the concept of prediction interval forecasting, where not only an accurate prediction point but also the confidence level of a given prediction are computed to provide further information. This paper develops a new model for predicting photovoltaic generators' output power confidence interval 10 min …

Año de publicación:

2022

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Inteligencia artificial
    • Fotovoltaica

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 7: Energía asequible y no contaminante
    • ODS 13: Acción por el clima
    • ODS 9: Industria, innovación e infraestructura
    Procesado con IAProcesado con IA