Using the general energy function of the random neural networks to solve the graph partitioning problem
Abstract:
Typically, the neural networks are used to provide heuristic solutions to very difficult optimization problems. This is usually achieved by designing neural networks whose energy function mimics a cost function which embodies the optimization problem to be solved. In this paper, we propose to use a general energy function of the random neural network, defined in previous work, to solve the graph partitioning problem. We show as this energy function permits to define a general method to use the random neural network in the resolution of combinatorial optimization problems.
Año de publicación:
1996
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales