Variable mesh optimization for continuous optimization problems


Abstract:

Population-based meta-heuristics are algorithms that can obtain very good results for complex continuous optimization problems in a reduced amount of time. These search algorithms use a population of solutions to maintain an acceptable diversity level during the process, thus their correct distribution is crucial for the search. This paper introduces a new population meta-heuristic called "variable mesh optimization" (VMO), in which the set of nodes (potential solutions) are distributed as a mesh. This mesh is variable, because it evolves to maintain a controlled diversity (avoiding solutions too close to each other) and to guide it to the best solutions (by a mechanism of resampling from current nodes to its best neighbour). This proposal is compared with basic population-based meta-heuristics using a benchmark of multimodal continuous functions, showing that VMO is a competitive algorithm. © 2011 Springer-Verlag.

Año de publicación:

2012

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad