Vertex-antimagic labelings of regular graphs


Abstract:

Let G = (V,E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, ..., p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, ..., r + 1. © 2012 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg.

Año de publicación:

2012

Keywords:

  • vertex-antimagic edge labeling
  • Regular graph
  • Super vertex-antimagic total labeling

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática
  • Optimización matemática

Áreas temáticas de Dewey:

  • Programación informática, programas, datos, seguridad
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 4: Educación de calidad
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA