Visualization of complex datasets with the self-organizing spanning tree
Abstract:
Visualization of real world data is a difficult task due to the high-dimensional and the complex structure in real datasets. Scientific data visualization requires a variety of mathematical techniques to transform high-dimensional data sets into simple graphical objects that provide a clearer understanding. In this work a Self-Organizing Spanning Tree is proposed, which is able to learn a tree topology without any prespecified structure. Experimental results are provided to show the good performance with synthetic and real data. Moreover, the proposed self-organizing model is applied to color vector quantization, whose comparative results are provided.
Año de publicación:
2015
Keywords:
- Visualization
- Spanning trees
- unsupervised learning
- Self-organizing map topologies
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Análisis de datos
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Funcionamiento de bibliotecas y archivos
- Métodos informáticos especiales