Visualizing uncertainty in the prediction of academic risk


Abstract:

This work proposes a generic visual representation to help relevant decision-makers to effectively address the inherent uncertainty present in the prediction of academic risk based on historical data. The three main sources of uncertainty in this type of prediction are visualized: the model predictive power, the data consistency and the case completeness of the historic dataset. To demonstrate the proposed visualization technique, it is instantiated in a real-world scenario where the risk to fail at least one course in an academic semester is predicted and presented in a student-counseling system. This work also proposes how this visualization technique can be evaluated and applied to other Visual Learning Analytics tools.

Año de publicación:

2015

Keywords:

  • Uncertainty Visualization
  • academic risk
  • Visual Learning Analytics

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos

Áreas temáticas de Dewey:

  • Conocimiento
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 4: Educación de calidad
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA

Contribuidores: