Voice pathology detection using artificial neural networks and support vector machines powered by a multicriteria optimization algorithm
Abstract:
Computer-aided diagnosis (CAD) systems have allowed to enhance the performance of conventional, medical diagnosis procedures in different scenarios. Particularly, in the context of voice pathology detection, the use of machine learning algorithms has proved to be a promising and suitable alternative. This work proposes the implementation of two well known classification algorithms, namely artificial neural networks (ANN) and support vector machines (SVM), optimized by particle swarm optimization (PSO) algorithm, aimed at classifying voice signals between healthy and pathologic ones. Three different configurations of the Saarbrucken voice database (SVD) are used. The effect of using balanced and unbalanced versions of this dataset is proved as well as the usefulness of the considered optimization algorithm to improve the final performance outcomes. Also, proposed approach is comparable with state-of-the-art methods.
Año de publicación:
2018
Keywords:
- Voice pathology
- Computer-aided diagnosis
- Optimization
- classification
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
Áreas temáticas:
- Ciencias de la computación