Wavelet autoregressive model for monthly sardines catches forecasting off central southern Chile
Abstract:
In this paper, we use multi-scale stationary wavelet decomposition technique combined with a linear autoregressive model for one-month-ahead monthly sardine catches forecasting off central southern Chile.The monthly sardine catches data were collected from the database of the National Marine Fisheries Service for the period between 1 January 1964 and 30 December 2008. The proposed forecasting strategy is to decompose the raw sardine catches data set into trend component and residual component by using multi-scale stationary wavelet transform. In wavelet domain, both the trend component and the residual component are independently pbkp_redicted using a linear autoregressive model. Hence, proposed forecaster is the co-addition of two pbkp_redicted components. We find that the proposed forecasting method achieves a 99% of the explained variance with a reduced parsimonious and high accuracy. © 2011 Springer-Verlag.
Año de publicación:
2011
Keywords:
- wavelet decomposition
- forecasting
- Autoregression
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Ecología
- Serie de tiempo
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación
- Ciencias sociales
- Geología, hidrología, meteorología