Wavelet autoregressive model for monthly sardines catches forecasting off central southern Chile


Abstract:

In this paper, we use multi-scale stationary wavelet decomposition technique combined with a linear autoregressive model for one-month-ahead monthly sardine catches forecasting off central southern Chile.The monthly sardine catches data were collected from the database of the National Marine Fisheries Service for the period between 1 January 1964 and 30 December 2008. The proposed forecasting strategy is to decompose the raw sardine catches data set into trend component and residual component by using multi-scale stationary wavelet transform. In wavelet domain, both the trend component and the residual component are independently pbkp_redicted using a linear autoregressive model. Hence, proposed forecaster is the co-addition of two pbkp_redicted components. We find that the proposed forecasting method achieves a 99% of the explained variance with a reduced parsimonious and high accuracy. © 2011 Springer-Verlag.

Año de publicación:

2011

Keywords:

  • wavelet decomposition
  • forecasting
  • Autoregression

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Ecología
  • Serie de tiempo
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación
  • Ciencias sociales
  • Geología, hidrología, meteorología