Wavelet based autoregressive RBF network for sardines catches forecasting


Abstract:

This paper deals with forecasting of monthly sardines catches in north area of Chile. The forecasting model is based on un-decimated stationary wavelet transform (SWT) combined with radial basis function (RBF) neural network and linear autoregressive (AR) model. The original monthly sardines catches data are decomposed into two sub-series employing 1-level SWT and the appropriate subseries are used as inputs to the (RBF+AR) model to forecast 1-month ahead monthly sardines catches. The forecaster's parameters are estimated by using a hybrid algorithm based on the least square (LS) method and Levenberg Marquardt (LM) algorithm. The forecasting performance based on Hybrid (LS+LM) algorithm based was evaluated using determination coefficient and showed that a 99% of the explained variance was captured with a reduced parsimony and high accuracy. © 2008 IEEE.

Año de publicación:

2008

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Optimización matemática
    • Pronóstico

    Áreas temáticas:

    • Métodos informáticos especiales