Wavelet polynomial autoregression for monthly bigeye tuna catches forecasting


Abstract:

In this paper, multiscale wavelet analysis combined with a multivariate polynomial is presented to improve the accuracy and parsimony of 1-month ahead forecasting of monthly bigeye tuna catches in equatorial Indian Ocean. The proposed forecasting model is based on the decomposition the raw data set into trend and residuals components by using stationary wavelet transform. In wavelet domain, the trend component and residuals components are pbkp_redicted with a linear autoregressive model and a multi-scale polynomial autoregressive model; respectively. We find that the proposed forecasting method achieves 99% of the explained variance with reduced parsimony and high accuracy. © 2009 IEEE.

Año de publicación:

2009

Keywords:

  • Wavelet Analysis
  • forecasting
  • Multivariate polynomial

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Pronóstico
  • Optimización matemática

Áreas temáticas:

  • Probabilidades y matemática aplicada
  • Otras ramas de la ingeniería
  • Economía de la tierra y la energía

Contribuidores: