Weak links array generated by a continuous wave laser in a superconducting sample


Abstract:

Vortex state and magnetic response in a disk with an array of weakly-superconducting (or normal regions) created in the sample increasing the temperature T locally by using a continuous wave laser (CWL) that emits a beam with a controlled heat output, beam duration and intensity are studied. The time-dependent Ginzburg–Landau theory is used to describe the interaction of the light with the superconductor, where the defects are include through the spatially-dependent temperature. Vortices penetrating into the weak-superconducting regions which are generated considering that T > Tc (Tc is the critical temperature of the sample) where the CWL is pointing. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning with different shapes and sizes which are possible to be modified in the same superconducting sample without any structural changes that could include metals, permanent magnets and implantation of heavy ions.

Año de publicación:

2018

Keywords:

  • Continuous wave laser
  • Time dependent Ginzburg–Landau
  • Topological defects
  • Mesoscopic superconductor

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Física

Áreas temáticas:

  • Miscelánea
  • Electricidad y electrónica
  • Ingeniería y operaciones afines