Weak-strong uniqueness in weighted L<sup>2</sup> spaces and weak suitable solutions in local Morrey spaces for the MHD equations


Abstract:

We consider here the magneto-hydrodynamics (MHD) equations on the whole space. For the 3D case, in the setting of the weighted L2 spaces we obtain a weak-strong uniqueness criterion provided that the velocity field and the magnetic field belong to a fairly general multipliers space. On the other hand, we study the local and global existence of weak suitable solutions for intermittent initial data, which is characterized through a local Morrey space. This large initial data space was also exhibit in a contemporary work [4] in the context of 3D Navier-Stokes equations. Finally, we make a discussion on the local and global existence problem in the 2D case.

Año de publicación:

2021

Keywords:

  • Suitable solutions
  • Multipliers spaces, Local Morrey spaces
  • Weak-strong uniqueness
  • Global weak solutions
  • MHD equations

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis