Weak-strong uniqueness in weighted L<sup>2</sup> spaces and weak suitable solutions in local Morrey spaces for the MHD equations
Abstract:
We consider here the magneto-hydrodynamics (MHD) equations on the whole space. For the 3D case, in the setting of the weighted L2 spaces we obtain a weak-strong uniqueness criterion provided that the velocity field and the magnetic field belong to a fairly general multipliers space. On the other hand, we study the local and global existence of weak suitable solutions for intermittent initial data, which is characterized through a local Morrey space. This large initial data space was also exhibit in a contemporary work [4] in the context of 3D Navier-Stokes equations. Finally, we make a discussion on the local and global existence problem in the 2D case.
Año de publicación:
2021
Keywords:
- Suitable solutions
- Multipliers spaces, Local Morrey spaces
- Weak-strong uniqueness
- Global weak solutions
- MHD equations
Fuente:


Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis