Weyl type theorems for left and right polaroid operators
Abstract:
A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators. © Birkhäuser Verlag Basel/Switzerland 2010.
Año de publicación:
2010
Keywords:
- Localized SVEP
- Weyl's theorem
- Semi B-Brower operators
- Left and right Drazin invertibility
- Property (w)
Fuente:
google
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas