Weyl type theorems for left and right polaroid operators


Abstract:

A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators. © Birkhäuser Verlag Basel/Switzerland 2010.

Año de publicación:

2010

Keywords:

  • Localized SVEP
  • Weyl's theorem
  • Semi B-Brower operators
  • Left and right Drazin invertibility
  • Property (w)

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas